Vapor Intrusion Mitigation Engineering controls for indoor air protection of large commercial structures # Agenda: - Sub-slab communication testing - Layout and Design <u>active</u> SSD systems - Project Summary # Sub-slab communication testing – preliminary steps Identify possible sources of short circuiting such as: - Cracks in concrete slab - Poorly sealed concrete around utility conduit and plumbing Sub-slab communication testing - preliminary steps # Sealing concrete and sources of short circuiting: - Cement grout may be necessary in large cracks and fissures - Low VOC polyurethane caulk in smaller slab cracks and around entry point of pipes and utilities # Sub-slab communication testing Vacuum extraction testing Determining the potential ROI #### TEST RESULTS IN SUB-SLAB | Well ID: | EX-1 | OB-1 | OB-2 | OB-3 | OB-4 | | | | | | | |-----------------------|---|-------------|------|------|------|--|--|--|--|--|--| | Purpose: | Extraction | Observation | | | | | | | | | | | Offset Distance (ft): | 0 | 5 | 10 | 15 | 20 | | | | | | | | Applied Vacuum | Observed Vacuum Response (inH ₂ O) | | | | | | | | | | | | 3.4 | | 0.11 | 0.04 | 0.03 | 0.02 | | | | | | | | 6 | | 0.25 | 0.1 | 0.06 | 0.04 | | | | | | | | 7 | _ | 0.38 | 0.15 | 0.1 | 0.06 | | | | | | | #### ROI determination ESTIMATED RADIUS OF INFLUENCE (At 0.025" H₂O) # SSDS Layout and Design # Existing Structures-SSDS Layout and Design - ROI as determined by subslab communication testing - Structural and aesthetic considerations # **Existing Structures -**SSDS Layout and Design ### Sub-Slab Vapor Collection Lines - Typically 4 inch screened PVC (ex. PVC Sch 40, 0.010 screen) - Custom screen slotting may be required with long collection line runs # **New Construction -**SSDS Layout and Design ### Sub-Slab Vapor Collection Lines **New Construction -**SSDS Layout and Design Installed with a minimum of 2 inches of gravel above and below collection lines to facilitate vapor transport ALTERNATIVE - Low profile, 1 inch rectangular collection pipe is also available ** Reduces vapor transport layer to 5" # Vapor Barrier - Options **SHEETING** installed beneath concrete slab pour # Vapor Barrier - Options **SPRAY-ON** vapor barrier applied beneath concrete slab pour ### Blower Selection: Types and General Features Inline Rotary Fan Radon fan - Low vacuum - Low air flow Centrifugal Blower Cincinnati fan - Moderate vacuum - Moderate air flow Regenerative Blower Rotron blower - Low vacuum - High air flow Positive Displacement Blower Roots blower - High vacuum - High air flow ### Blower Selection: Site requirements and energy efficiency | EX-1 | | | | | | |----------------|--------------|-----------|---------------|-------------|----------| | | | | | Temperature | Air Flow | | Applied Vacuum | Air Velocity | Diameter | Air Flow Rate | | Rate | | ("H2O) | (fpm) | Pipe (in) | (acfm) | (°F) | (scfm) | | 3.4 | 1238 | 2 | 27.0 | 55 | 27.5 | | 6 | 2346 | 2 | 51.2 | 55 | 51.7 | | 7 | 3568 | 2 | 77.8 | 55 | 78.4 | #### Blower requirements: - Approx 80 scfm x 6 extraction points = 480 scfm total - Adding a 20% safety and expansion factor → 575 scfm - B) Capable of efficient, constant operation at → 7+ inches H2O vacuum #### **Blower Selection** # Requirements - > 575+ scfm = moderate air flow - > 7"+ static pressure = moderate pressure # Centrifugal Blower ### PB SERIES DIRECT DRIVE RATING TABLES at 3450 RPM | CFM and BHP at Static Pressure Shown Ratings at 70°F., .07 <u>5 Dens</u> ity, Sea Level |---|--|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|----------------------|-------------------|----------------------|-------------------|----------------------| | MODEL | NOMINAL WHEEL | NOMINAL | 1" SP | | 2" SP | | 3" SP | | 4" SP | | 5" SP | | 6" SP | | 7" 91 | | 8" SP | | | NO. | DIA. & WIDTH | INLET DIA. | CFM | BHP | PB-8 | 7 x 2 ⁷ / ₁₆
8 x 2 ³ / ₄ | 4"
4" | 280
344 | .30
.36 | 228
292 | .28
.33 | 138
228 | .26
.28 | 122 | .23 | | | | | | | | | | PB-9 | 8 x 2 ³ / ₄
8 ¹ / ₂ x 2 ³ / ₄
9 x 2 ⁷ / ₈ | 5"
5"
5" | 388
435
493 | .39
.46
.52 | 341
385
445 | .36
.41
.48 | 285
324
384 | .32
.37
.42 | 156
243
310 | .25
.33
.37 | 196 | .31 | | | | | | | | | 10 ¹ / ₄ x 3 BC
9 ³ / ₄ x 2 ⁷ / ₈
10 ⁵ / ₈ x 2 ⁵ / ₈ | 5"
5"
5" | 511
549
592 | .56
.81
.84 | 463
501
552 | .50
.76
.78 | 404
449
509 | .45
.71
.72 | 344
395
463 | .42
.66
.66 | 283
335
415 | .38
.60
.59 | 211
258
360 | .33
.51
.52 | 291 | .44 | 141 | .31 | | PB-10A | 9 x 2 ⁷ / ₈
10 ¹ / ₄ x 3 BC
9 ³ / ₄ x 2 ⁷ / ₈ | 6"
6"
6" | 576
605
710 | .70
.79
1.02 | 510
547
658 | .65
.72
.96 | 425
479
594 | .58
.66
.89 | 325
399
517 | .50
.60
.82 | 163
299
428 | .37
.53
.72 | 149
314 | .43
.59 | 109 | .42 | | | | | 11 x 3 BC
10 ⁵ /8 x 2 ⁵ /8
11 x 2 ³ /4 | 6"
6"
6" | 729
826
830 | 1.06
1.39
1.42 | 687
763
780 | 1.01
1.30
1.33 | 638
699
727 | .95
1.23
1.23 | 580
632
670 | .88
1.15
1.15 | 511
559
607 | .81
1.06
1.06 | 425
476
537 | .71
.96
.97 | 306
361
450 | .59
.83
.87 | 307 | .70 | | | 11 ¹ / ₂ x 2 ⁷ / ₈
12 x 2 ⁷ / ₈ | 6"
6" | 884
921 | 1.52
1.93 | 836
886 | 1.45
1.89 | 780
846 | 1.38
1.84 | 718
801 | 1.30
1.78 | 652
750 | 1.22
1.70 | 582
691 | 1.14
1.61 | 506
622 | 1.04
1.51 | 414
540 | .92
1.39 | | PB-12A | 11 x 3 BC
10 ⁵ /8 x 2 ⁵ /8
11 x 2 ³ /4 | 7"
7"
7" | 877
1062
1155 | 1.10
1.62
2.00 | 807
989
1068 | 1.04
1.53
1.85 | 729
899
974 | .96
1.42
1.71 | 642
795
873 | .88
1.29
1.56 | 543
681
762 | .79
1.15
1.40 | 419
553
636 | .69
.99
1.23 | 181
378
487 | .51
.78
1.04 | 281 | .78 | | | 11 ¹ / ₂ x 2 ⁷ / ₈
12 x 2 ⁷ / ₈
13 x 3 ¹ / ₄ BC | 7"
7"
7" | 1266
1307 | 2.39
2.61 | 1183
1225 | 2.28
2.46 | 1092
1139 | 2.14
2.30 | 997
1052 | 2.00
2.15 | 900
965 | 1.85
2.00 | 798
876 | 1.69
1.86 | 686
784 | 1.51
1.72 | 547
681 | 1.30
1.56 | | | 13 X 3 1/4 BC
12 1/4 X 2 7/8
13 X 3 1/4 | 7"
7"
7" | 1297
1363
1464 | 2.61
2.92
3.24 | 1233
1287
1388 | 2.51
2.76
3.08 | 1164
1202
1306 | 2.40
2.58
2.92 | 1093
1114
1222 | 2.29
2.40
2.77 | 1021
1025
1139 | 2.17
2.22
2.61 | 947
936
1058 | 2.06
2.06
2.47 | 871
845
978 | 1.96
1.90
2.32 | 791
748
897 | 1.84
1.74
2.17 | # Site Summary Site Summary – overview - Former manufacturing facility - Currently used as warehouse - CVOC impacts to soil & GW - 45,000 ft² target area for sub-slab depressurization # Site Summary – communication testing # ROI: - Agency requires sub-slab negative pressure >/= 0.02" H20 - ROI of 25 ft used to design installation layout # Site Summary – Layout 17 extraction points at 25 ft ROI required to sufficiently cover the target depressurization area ## Site Summary – SSD System #### PD BLOWERS - 1) Roots URAI 36 Blower Skid - 2) Roots URAI 24 Blower Skid - 3) Vapor carbon treatment required prior to discharge # Site Summary – System Installation Logistics Extraction point -> conveyance line Conveyance line → blower # VaporEmergency.com # (833) NO VAPOR (833) NO VAPOR Home Our Tean Vapor Mitigation Systems Expert Installation **ABOUT US**